The Nagas speak languages of the Tibeto-Burman family. Yet, according to our present state of knowledge, the Naga languages do not constitute a single genetic subgroup within Tibeto-Burman. What defines the Nagas best is perhaps just the label Nāga, which was once applied indiscriminately by Indo-Aryan colonists to all scantily clad tribes speaking Tibeto-Burman languages in the northeast of the Subcontinent. At any rate, the name Nāga, ultimately derived from Sanskrit nagna >naked<, originated as a titular label, because the term denoted a sect of Shaivite sadhus whose most salient trait to the eyes of the lay observer was that they went through life unclad. The Tibeto-Burman tribes labelled Nāga in the northeast, though scantily clad, were of course not Hindu at all. The diverse Naga language communities observed their own indigenous religions and represented a lineage of cultural traditions entirely distinct from the Hindu, Jain and Buddhist traditions of India proper. Other etymologies have been proposed relating the ethnonym Nāga to words or expressions in one or other language of the many diverse Naga languages. One such etymology proposes that the term derives from an expression denoting piercing, a practice prevalent amongst some of the Naga tribes. Whether or not any such alternative explanations in fact represent the genuine etymology of the name, or just reflect folk etymologies, they evidently take their inspiration from popular perceptions by outsiders of salient features of Naga material culture.

Ethnically, many Tibeto-Burman tribes of the northeast have been called Nāga in the past or have been labelled as >Naga< in scholarly literature who are no longer usually covered by the modern more restricted sense of the term today. Linguistically, even today’s Naga languages do not represent a single coherent branch of the family, but constitute several distinct branches of Tibeto-Burman. This essay aims (1) to give an idea of the linguistic position of these languages within the family to which they belong, (2) to provide a relatively comprehensive list of names and localities as a directory for consultation by scholars and interested laymen who wish to make their way through the jungle of names and alternative appellations that confront any interested reader of ethnographical and linguistic literature on the Nagas and their closest Tibeto-Burman neighbours in northeastern India, and (3) to address the issue of the provenance of the various Tibeto-Burman language communities designated collectively as Naga.

The Tibeto-Burman family vies with Indo-European for the title of the language family with the most speakers in the world. Numerically, however, most speakers of Tibeto-Burman languages are represented by a single branch. The Sinitic languages Mandarin, Hakka, Cantonese and the other Chinese >dialects< account for most speakers as a historical consequence of the southward expansion of Han language and culture from northeastern China from the 3rd century BC onwards. Yet Sinitic is just one of many branches. Most of the branches of the Tibeto-Burman language
family are represented solely in India. In fact, the linguistic
and prehistorical centre of diversity of the language phy­
lum lies decidedly within the Indian subcontinent.

The Tibeto-Burman family of languages was first identi­
fied in Paris by the German scholar Julius von Klaproth in
his Asia Polyglotta in 1823. The first explicitly polyphyletic
view of Asian linguistic stocks had been presented over a
century earlier, in 1692, by Nicolaes Witsen, former mayor
of Amsterdam. Yet by the beginning of the nineteenth
century, enough language documentation had accumulated
in Europe that the well-travelled and knowledgeable Klaproth
was able to identify and distinguish twenty-three Asian
language families based on his systematic comparison of
lexical roots. Some of his families have been augmented,
diminished or redefined, but today his Tibeto-Burman
representation is schematic and neutral with respect to
the genealogical relationship between the various language
communities usually called >Northern Nagas< 1 even though
the geographical distribution of the major branches of
Tibeto-Burman language family

Each branch of the family shown in Fig. 1 contains between
one and over forty completely different languages. The
representation is schematic and neutral with respect to
different higher-order subgrouping hypotheses about the
branching of the family, e.g. Sino-Bodic, Newaric, Brah­
maputran. The subgroups Sinitic, Bòi, Tujia, Qiangic and
the Central European languages can be represented both inside China and on the
Indian subcontinent. All other groups lie within India, Nepal,
Bhutan, Burma and Bangladesh.

The key to understanding the prehistory of this language
family therefore lies in India, and the centre of diversity
lies specifically in the northeastern corner of the Subcon­
tinent, where we also find the Naga languages. Table 3 lists
the groups in India which are called Naga, some
neighbouring groups that have been loosely categorised as

Fig. 1. One of the language families identified by Julius Heinrich
von Klaproth in his polyphyletic view of Asian linguistic stocks (1823,
1826). He explicitly excluded languages today known to be Kra-Dai or
Daic (e.g. Thai, Lao, Shan) and known to be Austroasiatic (e.g. Mien,
Vietnamese, Nicobarese, Khmer).

Fig. 2. Major branches of the Tibeto-Burman language family
(van Driem 2001).

The metaphor of fallen leaves does not imply the existence of a tree.
Yet we cannot lift our gaze from the forest floor to see the
tree because we cannot look directly into the past. Instead,
historical comparative work will hopefully enable us to see
the shadows which the branches cast between the leaves on
the forest floor. Whether a language family appears to be
more rake-like or more tree-like is often a function of the
state of the art in historical comparative linguistics rather
than a statement about linguistic phylogeny. It is relevant
to note, however, that with the inexorable progress of Indo­
European linguistic studies, even the twelve branches of
this most well-studied language family, once depicted in
the pleasing shape of a branching oak, have gradually
assumed a more rake-like appearance and so come closer to
the fallen leaves model.

Fig. 3. Geographical distribution of the major branches ofTibeto­
Burman. Each dot represents a major subgroup, not a single language.
(van Driem 2001).

> Nagas< in the past, and other groups of northeastern India
that sometimes tend to be confused with the Nagas. The
most common alternative names for the various language
communities are provided in order to aid the unravelling
of the complex ethnic and linguistic nomenclature used lo­

cally and in the specialist literature. The geographical loca­
tions of the language communities are also indicated.

The groups numbered here from 1 to 8 live to the west or
to the north of the Nagas. Group 9 comprises the com­
unities usually called >Northern Nagas<, even though
Northern Nagas are linguistically more closely affiliated to
Brahmaputran, i.e. Group 4, and perhaps also to Kachin­
ic, i.e. Group 17. Groups 10 to 12 are the linguistic groups

Fig. 4. The Naga language groups within the Tibeto-Burman language family

312
Pochuri

George van Driem

the Ao branch, the Angami−narrowly defined as Nagas, comprising the languages of northeastern India. More information on all of these groups can be found in my handbook.

Tibeto-Burman subgroups and language communities

1 Lepcha - Sikkim and Darjeeling district
2 Lepcha (a.k.a. Rong)
3 Hrusish - in Kameng district in eastern Arunachal Pradesh
4 Dhimmai (a.k.a. Miji) - between Dirang, Seppa and Rang
5 Levai (a.k.a. Bangru) - northeast of Riang, northwest of Yontam
6 Hrusu (a.k.a. Aka) - southwest of Seppa, east of Shergaon
7 Kho-Bwa - in Kameng district in eastern Arunachal Pradesh
8 Khowa (a.k.a. Bugan) - around Bombila, esp. in Wanghoo and Singloing villages
9 Sulung (a.k.a. Puroit, Puroik) - north of Riang along the upper reaches of the Par river
10 Lispa (pass themselves off as -Monpa-) - around Dirang
11 Sherdupken - mainly in and around Shergaon, Rupa and Jijaon
12 Brahmaputran (a.k.a. Kachári-Koch or Bodo-Koch)

4a Koch
4a-1 Atong (a.k.a. At’ong, Atong -Garo-) - same area as Baghmara in the lower Garo Hills
4a-2 Rupa (a.k.a. Rupa -Garo-, Rugha) - downhills from the Atong
4a-3 Rahba - skirting the north of the Garo Hills, on both sides of the Brahmaputra just before it bends south
4a-4 Pani Koch - western fringe of the Mechigala below the Garo Hills
4a-5 Rajbangi (no longer speak any Tibeto-Burman language but a dialect of Bengali, historically Rajbangi are Koch assimilated linguistically in the Kamarupan period) - Silguri, Jalpaiguri, Alipur duar (trade route) and other former Bhutanese duar
4b Bodo-Garo
4b-1 Mech - Jalpaiguri district, Bhutanese duar
4b-2 Goro - Garo Hills
4b-3 Bodo - Darang
4b-4 Tiwa (a.k.a. Lalong) - in the Karbi Anglong or Mikir Hills around Umswali
4b-5 Dimasa (a.k.a. -Bodo-) - northern Cachar Hills
4b-6 Hojai (a.k.a. -Bodo-) - northern Cachar Hills
4b-7 Kachari (a.k.a. -Bodo-) - Goalpara
4b-8 Kokborok - Tripura
4c Chutiya (a.k.a. Deeri Chutiya) - in Lachhipur and Sibagar districts
5 Tani (a.k.a. -Boro-Mir-Dafla-) in Arunachal Pradesh
5a Western Tani (a.k.a. -Mir-Dafla-, Nishi group) - west of the Subansiri river
5b Apatani - between the Panior and Kamla rivers
5b-1 Bengni (a.k.a. Bangni, -Western Dafla-) - Upper Subansiri district in seven villages of Taking administrative circle
5b-2 Nishi (a.k.a. Chandar, Harpi, Hari and Tins) - Upper Subansiri district in seven villages of Taking administrative circle
5b-3 Nishing (a.k.a. Ni, -Eastern Dafla-) - Kameng valley in East Kameng district
5b-4 Niyus - possibly a sub-branch of Nishi
5b-5 Yano - possibly a sub-branch of Nishi
5b-6 Telgo - northeastern Subansiri district, inc. Denekoli and Talha
5b-7 Togin - northeastern Subansiri district, inc. Denekoli and Talha
5b-8 Hill Miri (a.k.a. Sarak) - enclaves between Nishi and Galling territory
5b-9 Galling (a.k.a. Gal) - southern half of West Siang district, west of the Siyom river
5b-10 Palibo (a.k.a. Libo) - north of Galling territory along banks of the Siyom or -Yomgo-, esp. Tato and Payum circles of West Siang district
5b-11 Ramo - Mechuka subdivision of West Siang district to the northwest of the Palibo area, esp. between Machukha and Tato
5b-12 Bokar - Monong Circle of Machuka subdivision in West Siang district, esp. Gesing, Pangri, Yangrang, Talibiyong, Rote, Pidi, Ruying, Kate, Luto, Ramni, Hemi or Moti, Pote, Karle, Monong, Ingo, Pulom, Simong, Papigo, Tadadege, Lapugora, Yongdonglo and Namasha
5b-13 Eastern Tani (a.k.a. -Boro-, Adi, Padam-Minyong group) - east of the Subansiri
5b-1 Danu - perhaps near the Subansiri, precise whereabouts unknown
5b-2 Bori - along the Siyom and Sike in an area enclosed by the Layaer hills on the east, the Pilli hills on the west and on the north by the closing together of these two ranges, esp. Payum, Dupu, Yio, Pame, Gasheng, Paying, Gatte, Gamgeng, Bogi and Mega villages
5b-3 Mishing (a.k.a. Plains Miri) - east Siang at Oyan, Mer and Namsing
5b-4 Padam (a.k.a. Bor Abar, i.e. Great Bori) - the Dibang, Siang and Yamme valleys in East Siang, from the Assam border in the south to the Sidip river in the north, and in western Lohit between the Siang and Stirui or Sikang river, esp. Anpum, Bizari, Bolung, Bonjim, Damdik, Kangkong, Kappang, Tapat and Pobjiang
5b-5 Minyong (a.k.a. Adi Minyong) - west bank of the lower Siang river, downstream of the Bori and Karko language communities and to the east of the Gallonges, esp. Ledum, Sido, Mirem, Yagrun, Rengin, Ruting, Kebang, Yensing, Pangin, Yekings, Boleng, Dosing, Pankang, Parong, Yelob, Stiang, Riga, Ru, Komsing, Rumgong, Pessing, Molom, Moput, Lorging and Jonio
5b-6 Shimong (a.k.a. Simong) - left bank of the Siangin and around Yingkiong, esp. Ngyaming, Jdo, Anging, Singjiang, Palin, Likor, Puting, Gete, Shimong and Gobuk villages
5b-7 Pasi - Pasighat area in the foothills, esp. Gos, Kele, Raing, Monkou, Balem, Rasam and Tigra
5b-8 Panggi - lower Yamme valley above the confluence of the Yamme and the Siang, esp. Geku, Sumsing, Sibum, Jero and Pongging
5b-9 Tangam - northernmost Siang district in the villages of Kaging, Njeri and Mayum
george van driesen

5b-10 karlo (a.k.a. karka) – across the river from the shimong to the west, mainly in karko village and nearby ramsing and gosang
5b-11 aching (a.k.a. aising) – headwaters of the yang near the tibetan border, from ramsing to the south to tutung in the north, esp. pongo, boredo, neling, minging and mosing.

gc-1 milang

5c-1 milang – three villages of milang, dalbing and pekimodi in the upper yamne valley in manipur.

6 digarish (a.k.a. northern mishmi) – kohima-chen in the northern tip of nagaland, in southern manipur.

9a-2 noite – in arunachal pradesh between pong and tirap

9b konyak-wancho cluster

9b-1 wancho – west of tirap district in arunachal pradesh around pong

9b-2 konyak – the northern tip of nagaland

9b-3 phom – northern tip of nagaland, north of tuesang

9b-4 khamlang – northern tip of nagaland

9b-5 chang – northern nagaland, in and around tuesang.

9c unclassified northern naga

9c-1 kuwa – burma east of tirap district

9c-2 haimi – burma east of tirap district

9c-3 ponyo – burma around lahe, east of tuesang in nagaland

9c-4 welam – burma around lahe, east of tuesang in nagaland

9c-5 nokaw – burma around lahe, east of tuesang in nagaland

9c-6 htagan – burma around lahe, east of tuesang in nagaland

10 ao branch – central nagaland, north and east of wokha

10a yacham

10b tengsa

10c ao changli

10d ao mongsen

10e lotha (a.k.a. lobta)

10f sangtam (a.k.a. thukumi)

10g yimunchuri (a.k.a. yachumi)

10h nuangmihe

11 angami-pochuri branch – southern nagaland around kokuma, neighbouring portions of burma and the northern fringe of manipur

11a angami

11b chaki (a.k.a. chokri)

11c sema

11d rengma (a.k.a. anzang)

11e pochuri (a.k.a. southern sangtam, eastern rengepa)

11f kerhama (a.k.a. keru)

11g senkadow

11h mao

11i ntenyi

11j maluri

12 zeme branch – the southwestern tip of nagaland and the northwestern corner of manipur, starting from tamenglong and moving to the north and north-northeast

12a mezieme

12b khorazoe

12c maram

12d piron

12e zeme (a.k.a. empeo naga, kacha naga, kochu mishmi)

12f nruanghmei

12g liangma (a.k.a. kwoireng)

12h c. mei (a.k.a. rongmai, kabui)

12i langma (a.k.a. keoireng)

13 tangkhol branch – the northeastern corner of manipur around ukhrul and in neighbouring portions of burma

13a tangkhol

13b maning

14 meithi (a.k.a. mani-mum) – in manipur.

15 kukiish (a.k.a. mizo-kuki chin)

15a mizo (a.k.a. lusii) – mizoram

15b hinu – northern mizoram and cachar

15c anal (a.k.a. lamgang kuki) – in southeast manipur

15d paiit – in southeastern manipur

15e gangte – in southeastern manipur

15f thado (a.k.a. thadou) – in southeastern manipur

15g kom – in southern manipur

15h purum – in southern manipur

15i chiru – in southern manipur and an enclave south of silchar in assam

15j berti – in an enclave northeast of silchar in assam

15k chori – in an enclave southwest of silchar in assam

15l basw – on the tripu-assis border

15m hrangkol – in an enclave in northern tripura

15n lakher (a.k.a. mura) – in southern mizoram

15o smte – northeastern mizoram and the neighbouring portion of burma

15p ze – northeastern mizoram and the neighbouring portion of burma

15q vaipehi – northeastern mizoram and in burma around tiddim

15r tiddim chin – northeastern mizoram and in burma around tiddim

15s falam chin – in southeastern mizoram and in burma around falam

15t haka chin – in southeastern mizoram and in burma around haka

16 mru (not to be confused with mru) – central hills of the chittagong

17 kachin

17a luish

17b andro (a.k.a. andro) – in manipur, the andro now speak meithi

17c sengma (a.k.a. sengma) – in manipur, the sengma now speak meithi

17d kadu (a.k.a. kadu) – in burma, the kadu now speak burmese

17e chakma (a.k.a. chakma) – in bangladesh, now speak bangali

17f south chittagong hill tracts of bangladesh, still speak sak

17g jinghpaw (a.k.a. kachin)

17h singpho – in the arunachal hills to the east of sadiya, north of the tangsa area (see sa-1)

17i jinghpaw dialects in northern burma and southern china

17j raji rante – pithauravadhi district in uttar-khand and the western nepalese terai

17k west himalayish – in himachal pradesh and garhwal

17l bodish – in tibet and neighbouring portions of pakistan, nepal, india and bhutan

17m newari – in nepal.

17n kiranti – in nepal

17o tamangic – in nepal.

17p dalchi – in northeastern nepal.

17q chepangic – in nepal.

17r dhimalish – in the southeastern nepalese terai and on the bhutanese duar

17s lopku – in bhutan.
A perennial issue is the likely provenance of the Nagas, a question that we can ask about any people or language community in the world. Inevitably, an ethnolinguistically informed answer to such a question is necessarily many-faceted because the prehistory of any language community is likely to have been complex. More fundamentally, the linguistic ancestors of a community were not necessarily the same people in time and space as the biological ancestors of that community. The material culture and agricultural package of a community represents a third quantity altogether. Nonetheless, a detailed understanding of the linguistic affinities and population genetics of language communities and the archaeological record of the region which they inhabit sheds much light on the possible prehistory and provenance of peoples and on the interactions which these peoples may have had in the past with other groups.

The Neolithic cultural assemblage which is associated with northeastern India is the Eastern Indian Neolithic. This cultural assemblage is entirely distinct from other Neolithic traditions of the Indian Subcontinent. The antecedents of the Eastern Indian Neolithic lie to the northeast, i.e. possibly in what today is Sichuan province. This is shown in Fig. 4. In several publications (van Driem 1998, 2001, 2002), I have argued for the hypothesis that the intrusion of this cultural assemblage into the northeast of the Subcontinent could represent Proto-Tibeto-Burmans originating from Sichuan, spreading southwest onto the lower Brahmaputra plain and introducing themselves and their Eastern Indian Neolithic culture to resident Austroasiatic populations. Indeed, the two major linguistic phyla Tibeto-Burman and Austroasiatic meet in this area. More recently, I have compared and discussed alternative and competing interpretations for the spread of Tibeto-Burman as reflected in the archaeological record (van Driem 2007a).

The main uncertainty about this scenario is the dating of the relevant cultural assemblage. Archaeologists have estimated the Indian Eastern Neolithic to date from between 8,000 and 5,000 BC (Sharma 1989b; Thapar 1985). If these estimates are taken at face value, it would mean that northeastern India had shouldered adzes at least three millennia before they appeared in Southeast Asia. Therefore, most archaeologists now tend to ascribe younger dates to the Indian Eastern Neolithic. Yet such archaeological dating estimates lie in the realm of conjecture, since a solid stratigraphy or reliable radiocarbon or accelerator mass spectrometry dates are still unavailable for this major South Asian cultural assemblage.

What arguments can be advanced to decide whether the advent of ancient Tibeto-Burman language communities to the Indo-Burmese borderlands took place in the Neolithic or much later, say, in the Bronze Age? The provenance of Tibeto-Burman groups in northeastern India and the Indo-Burmese borderlands and the timing of their arrival is inextricably connected with the question of the homeland and provenance of the Austroasiatics, whose current geographical centre of gravity lies in this very region. In addition to the geographical distribution of modern Tibeto-Burman and Austroasiatic language communities, we can examine the findings of population genetics and attempt to trace the spread of agriculture and crops.

Linguistic palaeontology, a term introduced by Adolphe Pictet in 1859, is an attempt to understand ancient material culture on the basis of the lexical items which can be reliably reconstructed for the oldest level of the common ancestral language. Linguistic palaeontology and native lore both suggest that the ancient Tibeto-Burmans were cultivators of broomcorn millet *panicum miliaceum* and foxtail millet *setaria italica*, whereas linguistic palaeontology qualifies the ancient Austroasiatics as the most likely candidates for the first cultivators of rice.
The oldest millet cultures have been found in the ancient Yellow River basin and on the North China Plain. Currently, the earliest attested domestic millet dates from before 6000 BC at Xingtongqiao near Shijiazhuang, Hebei province, where there was a Neolithic culture without s sickles (Fuller et al. 2007). The rice story, however, is more complex, and the plot of the story has changed more than once in recent decades. Whereas the oldest rice cultivation was once held incontestably to lie in the Indian subcontinent (Haudricourt & Hedin 1987), subsequent scholarship moved the homeland of rice agriculture from the Ganges to the Yangtze. For years conventional wisdom in archaeological circles dictated that rice was domesticated in the Middle Yangtze, perhaps as early as the sixth millennium BC. Most recently, new radiocarbon dates for rice agriculture in these areas leaves entirely open the possibility that rice cultivation may have originated in this region. Perhaps the remains of the very first rice cultivating assemblages lie buried forever in the silty sediments of the lower Brahmaputran basin or were washed out long ago into the depths of the Bay of Bengal.

More recently, scholars have increasingly begun to take note of findings that would move the original homeland of rice cultivation back to the Indian subcontinent. At the Laluhradewa site (26°46' N, 85°3' B), the early farming phase, corresponding to period A in the site's clear-cut stratigraphy, has radiocarbon dates ranging from c. 5300 to 4500 BC. Carbonised material from period A was collected by the flotation method, yielding Setaria glauca and Oryza rufipogon as well as a morphologically distinct, fully domesticated form of rice. In the late Neolithic. More recently, accelerator mass spectrometry dates were obtained on the rice grains themselves, corroborating the antiquity of rice agriculture at the site. Most recently, new radiocarbon dates for rice agriculture have been coming from the Ganges basin, with the Tokuv site near Allahabad now yielding similar dates (Yasvant Shinde [Vasant Sivaraj Shinde], personal communication 27 November 2007).

Turning to northeastern India and the Indo-Burman borders, where we find the Naga peoples and related Tibeto-Burman language communities, we must recognise that, notwithstanding the excellent archaeological work done in the Ganges and Yangtze river basins, the archaeology of ancient rice agriculture is simply not known because no substantive archaeological work has been done on the Neolithic in the most relevant areas, e.g. Bangladesh, northeastern India and Burma. The sheer dearth of archaeological research in these areas leaves entirely open the possibility that rice cultivation may have originated in this region. The Naga language groups within the Tibeto-Burman language family

The Naga language groups within the Tibeto-Burman language family

The rice story, however, is more complex, and the plot of the story has changed more than once in recent decades. Whereas the oldest rice cultivation was once held incontestably to lie in the Indian subcontinent (Haudricourt & Hedin 1987), subsequent scholarship moved the homeland of rice agriculture from the Ganges to the Yangtze. For years conventional wisdom in archaeological circles dictated that rice was domesticated in the Middle Yangtze, perhaps as early as the sixth millennium BC. Most recently, new radiocarbon dates for rice agriculture in these areas leaves entirely open the possibility that rice cultivation may have originated in this region. Perhaps the remains of the very first rice cultivating assemblages lie buried forever in the silty sediments of the lower Brahmaputran basin or were washed out long ago into the depths of the Bay of Bengal.

More recently, scholars have increasingly begun to take note of findings that would move the original homeland of rice cultivation back to the Indian subcontinent. At the Laluhradewa site (26°46' N, 85°3' B), the early farming phase, corresponding to period A in the site's clear-cut stratigraphy, has radiocarbon dates ranging from c. 5300 to 4500 BC. Carbonised material from period A was collected by the flotation method, yielding Setaria glauca and Oryza rufipogon as well as a morphologically distinct, fully domesticated form of rice. In the late Neolithic. More recently, accelerator mass spectrometry dates were obtained on the rice grains themselves, corroborating the antiquity of rice agriculture at the site. Most recently, new radiocarbon dates for rice agriculture have been coming from the Ganges basin, with the Tokuv site near Allahabad now yielding similar dates (Yasvant Shinde [Vasant Sivaraj Shinde], personal communication 27 November 2007).

Turning to northeastern India and the Indo-Burman borders, where we find the Naga peoples and related Tibeto-Burman language communities, we must recognise that, notwithstanding the excellent archaeological work done in the Ganges and Yangtze river basins, the archaeology of ancient rice agriculture is simply not known because no substantive archaeological work has been done on the Neolithic in the most relevant areas, e.g. Bangladesh, northeastern India and Burma. The sheer dearth of archaeological research in these areas leaves entirely open the possibility that rice cultivation may have originated in this region. Perhaps the remains of the very first rice cultivating assemblages lie buried forever in the silty sediments of the lower Brahmaputran basin or were washed out long ago into the depths of the Bay of Bengal.

At least four species of wild rice are native to northeastern India, viz. Oryza rufipogon, Oryza officinalis, Oryza perennis, and Oryza meyeriana, and over a thousand varieties of domesticated rice are currently in use in the region (Hazarika 2006a). The different varieties of rice in northeastern India are cultivated in three periods by distinct cultivation processes. In the process of ahu kheti, the rice is sown in the months of July and August, i.e. mid June to mid July, and the seedlings are transplanted. Sali kheti rice varieties are planted in the wild and may be derived from the wild offi­cinalis rice still widely found in swampy village areas. The wild rufipogon rice cannot be used for human consumption because the plants shed their seeds before they ripen, so that rufipogon rice is used in Assam and other parts of northeastern India as cattle feed (Hazarika 2006b).

The rice story, however, is more complex, and the plot of the story has changed more than once in recent decades. Whereas the oldest rice cultivation was once held incontestably to lie in the Indian subcontinent (Haudricourt & Hedin 1987), subsequent scholarship moved the homeland of rice agriculture from the Ganges to the Yangtze. For years conventional wisdom in archaeological circles dictated that rice was domesticated in the Middle Yangtze, perhaps as early as the sixth millennium BC. Most recently, new radiocarbon dates for rice agriculture in these areas leaves entirely open the possibility that rice cultivation may have originated in this region. Perhaps the remains of the very first rice cultivating assemblages lie buried forever in the silty sediments of the lower Brahmaputran basin or were washed out long ago into the depths of the Bay of Bengal.

More recently, scholars have increasingly begun to take note of findings that would move the original homeland of rice cultivation back to the Indian subcontinent. At the Laluhradewa site (26°46' N, 85°3' B), the early farming phase, corresponding to period A in the site's clear-cut stratigraphy, has radiocarbon dates ranging from c. 5300 to 4500 BC. Carbonised material from period A was collected by the flotation method, yielding Setaria glauca and Oryza rufipogon as well as a morphologically distinct, fully domesticated form of rice. In the late Neolithic. More recently, accelerator mass spectrometry dates were obtained on the rice grains themselves, corroborating the antiquity of rice agriculture at the site. Most recently, new radiocarbon dates for rice agriculture have been coming from the Ganges basin, with the Tokuv site near Allahabad now yielding similar dates (Yasvant Shinde [Vasant Sivaraj Shinde], personal communication 27 November 2007).

Turning to northeastern India and the Indo-Burman borders, where we find the Naga peoples and related Tibeto-Burman language communities, we must recognise that, notwithstanding the excellent archaeological work done in the Ganges and Yangtze river basins, the archaeology of ancient rice agriculture is simply not known because no substantive archaeological work has been done on the Neolithic in the most relevant areas, e.g. Bangladesh, northeastern India and Burma. The sheer dearth of archaeological research in these areas leaves entirely open the possibility that rice cultivation may have originated in this region. Perhaps the remains of the very first rice cultivating assemblages lie buried forever in the silty sediments of the lower Brahmaputran basin or were washed out long ago into the depths of the Bay of Bengal.

At least four species of wild rice are native to northeastern India, viz. Oryza rufipogon, Oryza officinalis, Oryza perennis, and Oryza meyeriana, and over a thousand varieties of domesticated rice are currently in use in the region (Hazarika 2006a). The different varieties of rice in northeastern India are cultivated in three periods by distinct cultivation processes. In the process of ahu kheti, the rice is sown in the months of July and August, i.e. mid June to mid April.